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A pseudopotential calculation of the band structure of both cubic-close-packed and hexagonal-close-packed
solid argon is presented. The pseudopotential form factor is obtained by fitting energy gaps to Mattheiss’s
augmented-plane-wave calculation. The direct gaps obtained are 1.03 Ry in the cubic phase and 0.84 Ry in
the hexagonal plane, i.e., a sizable reduction is found in the hexagonal structure. The hexagonal valence
band splits into two subbands of p. and p,—p, character with an energy gap clearly appearing between
them; the p.-like band lies higher in energy and constitutes the top of the valence band. Several other features
of the structures are discussed. Convergence of both calculations is checked to be about 0.01 Ry. Sensitivity
of the results to changes in the form factors is also discussed.

I. INTRODUCTION

N recent years many investigators have been inter-
ested in the electronic structure of rare-gas solids.!
The optical spectra, whose structure is mainly due to
excitons, has been studied in several experimental as
well as theoretical works.2=® The phase transitions in
two-component systems involving rare-gas solids have
been the subject of a series of papers by Barrett et al.5*
Finally, there have been many attempts!®?6 to explain
the higher stability of the face-centered-cubic (fcc)
structure, in which these gases crystallize, compared to
the hexagonal-close-packed (hcp) configuration.

The commonly known, well-determined phase of
solid argon is the fcc structure, with nearest-neighbor
distance! at 4°K of a,=3.7477 A. Some years ago a
metastable hcp phase of the solid argon was found!”
at temperatures below its melting point of 84°K. The
axial ratio of this structure was found to be that of the
close-packed spheres, 1.633, and the lattice constant
a=3.748 A, i.e., the same nearest-neighbor distance of
the cubic phase within experimental error.!

From the point of view of its electronic properties,
the band structure of the fcc phase has been calculated
by Knox and Bassani’® and Mattheiss.”® In the former
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calculation a combination of tight-binding and orthog-
onalized plane waves was used, while Mattheiss used
in his calculation the augmented-plane-wave method.
As far as we are aware, no calculation of the electronic
properties of the hcp structure has been performed.

Of those methods suitable for band-structure calcula-
tions, the pseudopotential® has the appealing feature
of allowing to transfer in a fairly straightforward way
information concerning a given element from one crystal
structure to another; this procedure has been applied
successfully in several cases.??~% On the other hand, it is
well known that the pseudopotential method converges
rather slowly in those cases which depart substantially
from free-electron-like structures.?

In order to test the usefulness of the pseudopotential
approach in the case of van der Waals solids like argon
and to use once again the “transferring” properties of
the method, we performed in the present work a pseudo-
potential calculation of argon in both its fcc and hep
phases. An empirical local pseudopotential form factor
for argon was obtained by reproducing within a few
percent the band structure of the cubic phase as calcu-
lated by Mattheiss; this form factor was then used to
obtain the band structure in the hcp phase. Although
the convergence of the method was rather slow and a
fairly large secular equation had to be solved, the
approach proved to be successful and sensible and
reliable band structures were obtained.

F~The calculation and results are presented in Sec. II
and a discussion”and conclusions constitute Sec. ITI.

II. CALCULATION AND RESULTS
A. Method

In order to obtain the band structure, we have to solve
Schrédinger’s equation

(= #@/2m)V*+V (D)W (1) = ER)x (1), (2.1)

2 1,, M. Falicov, in Energy Band in Metals and Alloys (Gordon
and Breach Science Publishers, Inc., New York, 1968), p. 73.

2 P, J. Lin and L. M. Falicov, Phys. Rev. 142, 441 (1966).

21,. M. Falicov and P. J. Lin, Phys. Rev. 141, 562 (1966).

% M. Y. Au-Yang and M. L. Cohen, Solid State Commun.
6, 855 (1968).
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1969).
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(1967).
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1 BAND STRUCTURE OF CUBIC

where V(r) is the self-consistent periodic potential.
Expanding the eigenfunctions in terms of orthogonalized
plane waves, this equation becomes the usual pseudo-
potential equation®

3 (&) ex (1) = (— (#*/2m)V*+U (r,k)) ¢x ()
=E®e(r), (2.2)

where

Uk)=V @)+ [E®—E]|e)(e:| (23)

is the nonlocal pseudopotential, and the functions ¢, (r)
correspond to core states.

If we expand the pseudo-wave-functions ¢x(r) as a
linear combination of plane waves, i.e.,

ok (1) =§ fo(k) exp[i(k+G)-r] (2.4)

(G denotes reciprocal lattice vectors), and then approxi-
mate U(rk) to a local pseudopotential

Urk)=> U(G)S(G) exp[:G-r], (2.5)
Eq. (2.2) becomes
% [3Cec: (k) — E(k)dce ] fer (k) =0, (2.6)

where
Hog (k)= (#2/2m) (k+G)%ce+S(G—G)U(G—G).
In our cases, the structure factor takes the values

S(G)=1 for the fcc structure
=cos[#nr(3h+8k+41)] for the hcp structure,

where, for the hcp structure, in the system of coordi-
nates of Fig. 1

G’= hG1+kG2+lG3 )
and in the four-index notation
G=(k, I, —k—L ).

The Fourier coefficients U (G) are determined in our
case from the known fcc band structure of argon.?®
In order to solve the secular equation

[3Ccor (k) — E(K)dcer | =0, (2.7)
we first truncate the matrix 3Cge- (k) at a certain value

TasLE I. Energy gaps and pseudopotential form
factors for fcc argon.

Sym-  Gaps to Best values Reciprocal- Form
metry be fitted obtained lattice factors
point (Ry) Ry) vector (Ry)
r 0.979 1.027 1,1, 1) —0.35
X 1.183 1.180 (2,0,0) —0.27
w 1.241 1.255 (2,2,0) —0.03
L 1.181 1.165 (3,1, 1) 0.09
K 1.227 1.211 2,2,2) —0.01
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F1c. 1. System of coordinates
for the hcp structure.

of |G| =K1, then we apply the perturbation method due
to Léwdin,? in the form described by Brust,? i.e.,
we solve the equation

[5ea (k) —E&)dse| =0, |G|, |G'|<K: (2.8)
where
L (k) =3Cce (k)
JCox (k)3 ke (k)
—_ (2.9)

IXKI>K1,|K|<K2 Age —Ixx(K)
Here Ager is chosen as?”

Ace'=average of the energy levels for G=G’
for G=G'.

K, is the maximum absolute value of the reciprocal-
lattice vectors G of the matrix elements to be considered
in the perturbation.

In our case the value of K; was taken to be approxi-
mately 6.0 a.u.; this corresponds to a matrix of order
~60 for the fcc case and ~125 for the hcp case. For
the perturbation calculation those matrix elements with
|G| from 6.0 a.u. up to K;=216 a.u. were taken into
account.

=3¥cer

B. Form Factors and Band Structure

The form factors U (G) were obtained by reproducing
the energy gaps between the conduction band and the
valence band in the fcc phase at the symmetry points?®
T, X, W, L, and K. The gaps were taken from the band
structure calculated by Mattheiss.!® These gaps as well
as the obtained gaps and the corresponding form factors
are given in Table I. The form factor U (G) as a function
| G|2is shown in Fig. 2. The values of U at the reciprocal
lattice vectors G of the cubic structure were obtained
by the above mentioned fitting. The value of U(0),
obtained from

U0)=—3Ep=—(#*/3m)3x°N/V)*?,  (3.1)
is —0.65147 Ry and the slope
aU(G)/d|G[*[e=o=|U(0)|*V/(4xe’N) ~ (3.2)

is 0.1080 Ry/|G|2, with |G |2 in units of (27/a)?=0.3933

26 P, Lowdin, J. Chem. Phys. 19, 1396 (1951).

27 D, Brust, Phys. Rev. 134, A1337 (1964).

28 [, Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.
50, 58 (1936).
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Fic. 2. Pseudopotential form factor U as a function of |G |2

a.u. A smooth curve was interpolated through the
points thus determined (Fig. 2).

The values of U(G) used in the calculation of the
hcp phase are given in the Table IT. The energy levels
at some symmetry points of the fcc and the hcp
Brillouin zone are given in Tables IIT and IV. The
energy bands for both the fcc and the hcp phases are
shown in Figs. 3 and 4. Standard notation for symmetry
points and lines is used for both structures.?8:?

C. Convergence

The convergence of the calculations is illustrated in
Fig. 5 where a typical case, i.e., the symmetry point T
of the hep structure is shown. We notice that with the

TaBLE II. Form factors for hcp argon.

Reciprocal-lattice vector Form factors (Ry)

,0,1,0 —0.38
(0%0,0,2) —0.35
1,0, 1, 1) —0.33
(10,1 2) —0.17
(11,2, 0) —0.03
1,01, 3) 0.04
(2,0,2,0) 0.09
1,1,2,2) 0.09
(2,0,2 1) 0.08
(0,0, 0, 4) —0.01

2 C. Herring, J. Franklin, Inst. 233, 525 (1942).

value of the cutoff K; which was used, the accuracy of
the energy levels is within 0.01 Ry.

D. Density of States

The density of states of the valence bands of both
structures was obtained by means of a tight-binding
fitting of the bands.

The fitting of the fcc valence band was made by
means of three parameters pq, (ppo), and (ppr), using
the notation of Slater and Koster® for the two-center
integrals. The values obtained for these parameters
are po=—0.29824 Ry, (ppo)=0.020506 Ry, (ppr)
=—0.0028611 Ry. They give, with no appreciable
error, the bands of Fig. 3 and Table III. The density

TasiE IIL. Energy-band levels in fcc argon.®

T2’ 0.908 X 1.096 W 1.091 Ly  1.094 K 1.025
I 0.788 X3 0.957 Ws 1.008 L1 0.915 Ks 0.999
X1 0.914 Wy  0.990 Ki 0.956

K1 0916

Ty —0.239 X§ —0.279 W —0.278 Ly —0.245 K¢ —0.271
Xy —0.373 Ws —0.326 Ly —0.384 K1 —0.305

K3 —0,351

T —1.466 X1 —1.444 Wi —1.463 L1 —1.456 K1 —1.459

a All energies in Ry.

3 J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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F16. 3. Energy bands of fcc argon [with U (0)=0].

of states of this band was thus calculated in the two- to use only three adjustable parameters in the form
center nearest-neighbor approximation. given by Miasek.’! It was necessary, because of the
In the case of the hcp valence band it was not possible  splitting of the p. and p,—p, subbands, to make the

TasLE IV. Energy-band levels in hcp argon.®

st  0.879 K, 0.876 Mzt 0.848 4; 0.863 H; 0.861 L, 0.826
it 0.869 Ks; 0.854 My~ 0773 4;  0.773 H, 0.834 Ly 0.762
e~ 0.857 K, 0.822 Myt 0.741
s 0.764
" 0.690
Ty~ —0.149 K¢ —0.192 My —0.179 4, —0.206 H; —0.191 L, —0.191
T3t —0.255 K; —0.336 Mzt —0.210 Az —0.301 H, —0.350 L, —0.136
s~ —0.293 K5 —0.345 M4+ —0.307 Hs; —0.352 L, —0.367
Tt —0.313 K, —0.358 Mz~ —0.328

My —0.358

M+ —0.373
r's —1.476 Ks —1.473 Mt —1.471 A —1.481 H, —1.473 L,—1.474
It —1.486 My —1.475

a All energies in Ry.
8t M. Miasek, Phys. Rev. 107, 92 (1957).



F1c. 4. Energy bands of hcp argon [with U (0)=0].

matrix elements (3/2)1; and (3/2)12 depend on three new  bands are
parameters po/, (ppo)y, (ppm)i’. The values obtained
for the parameters corresponding to the p,—p, sub-

po=—0.35848,

E
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0.7 -
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and the values given in Table II. For this purpose we con-

(ppmr)1=0.000899335
while those corresponding to the p, subbands are

pod’=—0.17621, (ppo)./=—0.0109504,
and

(ppm)y = —0.00436301.

All these quantities are given in Ry. They reproduce the
values of Fig. 4 and Table IV with no appreciable error.

For the conduction bands, the density of states was
found by fitting a parabola near T" in the fcc phase and
near I' and M in the hcp case. The resulting density of
states are

N(E)=0.0703(E—Er)'? a.u.,
where Er=0.788 Ry, and

N(E)=0.0676(E— Er)? a.u.
+ 10741 (E—EM)1/20<E'—EM) a.u.,
for the hcp case

where Lpr=0.690 Ry is the bottom of the conduction
band and E»=0.741 Ry is the energy of the Mt
level. In these equations E is given in Ry and 0(x) is
the ordinary step function

f(x)=1,
:O,

The corresponding effective masses are 0.622 for the
fcc and 0.606 and 1.84 for the I" and each of the three M
points of the hep structure, respectively.

For comparison, the density-of-state effective masses
at the top of the valence band are 10.182 for each of the
three p bands of the fcc structure and 11.467 for the
p=like antibonding band of the hcp structure.

Figures 6 and 7 are diagrams of the calculated den-
sities of state for the fcc and hcp phases, respectively.

for the fcc case

x>0
x<0.

E. Sensitivity of the Energy Levels to the Form Factors

It is interesting to determine how sensitive are the
energy levels to small changes of the form factors from

sidered the point I' of the hcp structure and made
several calculations,® in which various form factors
U(G) were varied from their best values. The results
are shown in Table V. We notice that the order of the
levels is not affected even when the absolute value of
the energy levels varies considerably from one set of
form factors to another. The energy-gap changes in the
most drastic case by about 149,; the p. levels are
always higher in energy than the p,— p, ones and a gap
always appears between the subbands. The conduction
band is fairly insensitive to form-factor changes.

III. DISCUSSION AND CONCLUSIONS

From the calculation described in Sec. II, the follow-
ing conclusions can be drawn:

(a) The direct gaps of the fcc structure at the points
X, W, L, K, and T, as determined by Mattheiss," were
chosen to determine the pseudopotential form factors.
The gap at T', however, could not be fitted accurately,®
and disagreement between our best value and
Mattheiss’s is about 5%. This gap is important since
it represents the actual energy gap in the solid. Our
value is 1.027 Ry compared with 0.979 Ry reported by
Mattheiss. Baldini? quoted an experimental value of
1.05 Ry. It is evident that our value is much closer to
experiment than the one obtained by the augmented-
plane-wave calculation.

(b) Several other differences can be noted between
our bands (Fig. 4) and those of Ref. 19. In the conduc-
tion band, for instance, the energy difference between
the I'; and the I'ys’ levels is in our calculation about one
quarter of the value reported by Mattheiss. The total

32 A smaller secular equation was used for this test; this does
not alter the variation of the levels considerably, although con-
vergence is by no means achieved.

3 As seen in Table I, our best least-squares fit to the five energy
gaps gave accurate values for all energy gaps except the one at I'.
Any attempt to improve the gap at I' gave a much worse agree-
ment for the other gaps.
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width of the valence p band is, on the other hand, three hcp: —0.206 Ry (single level);

times larger in our calculation.?*

(c) An inspection of the hcp band structure (Fig. 5)
reveals that the energy gap is about 0.84 Ry, i.e.,
259, smaller than the gap in the fcc structure.

(d) The valence p band of the hcp structure splits
into two subbands with a separation of 0.1 Ry between
them and an actual gap of 0.04 Ry (see Fig. 7). The
lower subband contains states of p,—p, symmetry, both
of bonding and antibonding character: a total amount of
four electrons per atom. The higher subband contains
the p.-like bonding and antibonding states adding up
to two electrons per atom.

(e) It is worth remarking that the splitting of the
subbands in the hcp structure as discussed in the pre-
vious paragraph does not occur in the fcc phase, where
it is forbidden by symmetry. The density of states,
however, shows a tendency for the states to group into
two distinct sets (see Fig. 6), a low-energy one with
roughly two electrons per atom and a high-energy
group with roughly four electrons per atom. This is
just opposite to the splitting in the hcp phase. This
inversion can be more clearly seen if one looks at
equivalent directions in the structure, for example, the
[111] direction in the fcc as compared to the [0001]
direction of the hcp structure. In this case the points
I'(fce) and L(fcc) correspond both to the point I'(hcp).
The point A4 (hcp) corresponds to the midpoint of the
symmetry line A (fcc), which goes from I'(fcc) to L(fcc).
The energies at 4 (hcp) and its equivalent fcc point are

3 L. F. Mattheiss, Ref. 19, reports a band width for the 3p states
of 0.044 Ry, while our calculation gives a band width of 0.145 Ry.
The discrepancy is about 0.1 Ry, which we believe is real and ten
times larger than our estimated error of 0.01 Ry. Since we try to
compare the band structures in a range of about 2.5 Ry, the
over-all discrepancy is still very small, of the order of 4%, and
gbout 10% of the values of the gap chosen for the parameter

tting.

—0.301 Ry (double level),

fcc: —0.242 Ry (double level);
—0.277 Ry (single level).

The inversion is apparent. Reasonable changes in the
form factors U (G) do not alter this feature of the band.?

(f) The fact that the p band of the hcp structure
could not be fitted to a tight-binding band with two-
center integrals and nearest-neighbor contributions
only, points out the inadequacy of the commonly made
assumptions that the electronic distribution in the rare-
gas solids can be considered as a superposition of
spherically symmetric tightly bound atomic-like orbitals
centered about the nuclear sites. Our results make clear
the facts that departure from spherical distribution
should be sizable, and that second (and probably
third and higher also) nearest-neighbor interaction are
not negligible.

(g) The binding energy of cubic argon is extremely
small®® (0.006 Ry/atom). The difference in binding
energies between the fcc and the hcp phases, as calcu-
lated with the Lennard-Jones potential®” gives the
staggeringly small value of 8X10~7 Ry/atom, with the
hcp structure being the stable one. The experimental
evidence! is, of course, the opposite. The fcc structure
is more stable than the hcp, with the difference in free
energies of the order of 0.19 of the binding energy,
i.e., of the order of 1075—10~% Ry/atom. Under these

35 The splitting of the subbands in the 3p band of hexagonal
argon is larger than our estimated error of 0.01 Ry, and therefore,
we believe, a real effect.

36 See, for example, C. Kittel, Introduction to Solid State Physics,
(J. Wiley and Sons, Inc., New York, 1966), 3rd ed., p. 81.

87 J. A. Prins, J. M. Dumoré, and L. T. Tjoan, Physica 18,
307 (1952).
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TaABLE V. Sensitivity of the I'(hcp) levels to changes in form factors.2
Energy levels.
It IV T~ st st ¥y it Iy
U —1.563 —1.534 —0.427 —0.393 —0.386 —0.219 0.718 0.872
U, —1.777 —1.736 —0.578 —0.543 —0.527 —0.359 0.711 0.850
Us —1.519 —1.492 —0.424 —0.385 —0.363 —0.194 0.747 0.875
Us —1.518 —1.494 —0.458 —0.418 —0.373 —0.206 0.754 0.860
Us —1.458 —1.437 —0.357 —0.325 —0.303 —0.134 0.747 0.878
Form factors U (G)
(1010) (0002) (1011) (1012) (1120) (1013) (2020) (1112) (2021) (0004)
U, —0.38 —0.35 —0.33 —0.17 —0.03 0.04 0.09 0.09 0.08 —0.01
U, —040 —0.37 —0.35 —0.19 —0.03 0.04 0.09 0.09 0.08 —0.01
U; —0.38 —0.35 —0.32 —0.16 —0.02 0.04 0.09 0.09 0.08 —0.01
Uy —0.38 —0.35 —0.33 —0.18 —0.03 0.04 0.10 0.10 0.09 —0.01
Us —0.37 —0.35 —0.31 —0.18 —0.03 0.05 0.09 0.09 0.08 —0.01

a All energies in Ry. The first rows correspond to the values used throughout the paper.

circumstances any attempt to calculate stability of
phases using pseudopotential theory would be foolish:
Such tiny energies are outside the scope and the con-
vergence range of the pseudopotential method. It is,
however, interesting to notice that, if the band struc-
tures as described in this paper are taken at face value,
the fcc structure is more stable than the hcp structure.
This can be seen by comparing the average energies of
the s and p bands of both structures. When exactly the
same pseudopotential is used for both structures, as is
the case in our calculation, the following numbers are
obtained:

fee:
average energy of the 3s electrons —1.458 Ry,

average energy of the 3p electrons —0.299 Ry,

weighted average of 3s and 3p electrons —0.589 Ry;
hep:

average energy of the 3s electrons —1.475 Ry,
average energy of the 3p,—3p, electrons —0.335 Ry,
average energy of the 3p. electrons —0.174 Ry,

weighted average of the 3s and 3p electrons —0.580 Ry.

This clearly gives the fcc as the most stable structure,
but by an amount of 9X10~® Ry, which is less than but
of the order of our estimated convergence error.

(h) Our pseudopotential can also be tested against
other calculations. If, to the energies quoted in the last
paragraph, we add the value of U (0)=—0.651 Ry which
for simplicity was not included in the band-structure
calculations, we obtain the following results:

average energy of 3s electrons —2.109 Ry (fcc)
—2.126 Ry (hcp);

average energy of 3p electrons —0.950 Ry (fcc)
—0.932 Ry (hcp).

These are to be compared with the Hartree-Fock
parameter for the argon atom, which are®®

Hartree-Fock energy of the 3s electron —2.107 Ry,
Hartree-Fock energy of the 3p electron —1.065 Ry.

The agreement should be considered very good if we
remember that the pseudopotential form factors were
obtained from the augmented-plane-wave energy gaps
of Mattheiss.?

It should be mentioned that from the present band-
structure optical properties of cubic and hexagonal
solid argon could in principle be calculated. Since the
optical properties? are dominated by excitons,* such a
calculation would be in fact a many-body one, with the
one-electron effect playing only a secondary role. In
any case, the band structures, as reported here, could
be the starting point for unravelling the complicated
spectra of these solids.
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